
AN EXPLANATION FOR "4-WAY CLOSURE" OF THRUST-FOLD STRUCTURES IN
THE ROCKY MOUNTAINS, AND IMPLICATIONS FOR SIMILAR STRUCTURES

ELSEWHERE 

S. Parker Gay, Jr.
Applied Geophysics, Inc.

675 South 400 East
Salt Lake City, Utah   84111

August 18, 1999

Abstract

Structural systems in the Rocky Mountains comprised of end-to-end

asymmetric (compressional) anticlines have been prolific producers of oil and gas

since the early years of this century.  Current geological thinking is that these systems

conform to the "thrust-fold" (listric thrust) model of Stone (1984, 1993), a scenario

supported by numerous seismic profiles and well-sections throughout the Rocky

Mountain province.  However, the thrust-fold model explains the structural closure

(i.e. folding) only in the thrust direction, which is generally the short axis of the

structure.  

In this paper I conclude that the closure, or plunge, at the ends of the

anticlines, the "longitudinal closure” along the long axis, is a result of strike-slip

movement that accompanied the thrusting.  I base this conclusion on the fact that

there is shortening in the longitudinal direction, proven by the longitudinal folding

itself.  This conclusion is also supported by the finding that many of the thrusts are

rooted in pre-existing basement faults, which occur at angles not always

perpendicular to regional stress, a situation that, kinematically, requires a strike-slip

component of movement.  The resulting stress, relative to the pre-existing structure,

may be termed "transpressive."
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Introduction

Our understanding of the structural geology of the Rocky Mountains has undergone a

profound metamorphosis in the last few decades, with most of the major advances being made in the

1980's and 1990's.  In the 1950's, I was taught in a petroleum geology course in Massachusetts that,

since the city of Denver was at a one mile elevation and Mt. Evans was at nearly 3 miles, there was

obviously a normal fault between the two.  The 1944 and 1962 AAPG Tectonic Maps of the United

States(Longwall, Cohee) and the 1968 USGS Basement Rock Map of the U.S. (Bayley and

Muehlberger) all showed the Front Range to be raised by normal faults.  Only more recently (Jacob

and Albertus, 1985) was it proven by seismic data that an enormous thrust fault, or series of such

faults, created the uplift of the Front Range.  Many previous workers dating back to the 1950's had

realized the thrusted nature of the Front Range from geological mapping - see Jacob, 1983, p. 229,

for a summary of this work - but the subject was still considered “controversial.”

A similar situation has existed in our understanding of oil field-sized structures and

anticlines.  Until the 1960's many people assumed that "block uplifts", i.e. near-vertical reverse or

normal faults, created the observed structural folds in overlying strata, as well as raising the

mountain ranges.  In the 1960's and 1970's the "fold-thrust uplift" model of R. Berg (1962) became

popular, but even this rendition showed the thrust fault steepening downward into basement, making

it just a modified form of block uplift. In 1981 and 1983, Gries, using deep well information,

proprietary seismic data, and published examples showed the prevalence of shallow-dipping, non-

vertical thrusts throughout the Rocky Mountain province, and in 1983 and 1984 a realistic, restorable

model that complies with this evidence was published by Stone.  This model, involving a listric

thrust rooted in basement, is now referred to (Stone, 1993) as "thrust-fold" (see Figure 1) and is 
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proven by seismic profiles and by oil and gas well drilling of a multitude of Rocky Mountain

structures.  An illustration of an actual "thrust-fold" structure, based on a high-quality seismic line,

is that shown by Ray and Keefer (1985) for the prolific gas-producing Madden Anticline (>1 tcf) in

the Wind River Basin of Wyoming (Figure 2).  The Madden structure lies in front of, and is parallel

to, the far-traveled South Owl Creek, or Casper Arch, thrust and is considered an auxiliary or

“sympathetic” thrust to this major Rocky Mountain structure.

Good summaries of the long history of structural geological concepts in the Rockies may be

had by reading Berg (1962), Harding & Lowell (1983), and Stone (1984, 1993), and will not be

discussed further here.  An excellent, more general discussion of the evolution of thought on thrusted

structures worldwide beginning in the last century is found in Perry, Roeder, and Lageson (1984).
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Explaining 4-Way Closure

However illustrative and realistic the "thrust-fold" model is for explaining Rocky Mountain

structure, in my opinion this model only tells half the story, structurally.  It explains what I call the

transverse closure on an anticline, as shown in the usual transverse cross-section, (e.g., Figures 1 &

2),  but explorationists well know that oil and gas producing structures require 4-way closure in most

cases.  In our emphasis on studying, understanding, and balancing transverse cross-sections, we, as

explorationists and structural geologists, have generally neglected to consider the closure, or plunge,

in the longitudinal direction (see Figure 3).  What causes this longitudinal closure, i.e., the plunge
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at the ends of an anticline? This is a question seldom addressed in structural geology textbooks and

the prolific technical literature of petroleum geology. The answer I propose is quite simple, even

trivial some will say, but in my opinion it is an important advancement in our understanding of

structural geology in compressional systems.  It takes us one step closer to a more comprehensive

understanding of regional structure in the Rocky Mountain province in general.  Longitudinal closure

is due to compression (“shortening”) in a longitudinal sense, that is, a stress that results in strike-

slip movement along the horizontal trace of the thrust (see Figure 4).  Some would describe the

causative force in this case as transpressive stress.  (Transpression is a relatively new term not found

in the 1957 “Glossary of Geology” (Howell), although it did appear in the 1980 (Bates & Jackson)

version.)
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The compressive nature of the longitudinal stress vector is proven by shortening (i.e. folding,

or closure) in that direction, just as it is in the transverse direction (Figure 3B).  Furthermore, I

suggest that the location of the steeper dip of the longitudinal closure (plunge) shows us the direction

of movement, just as it does in the transverse direction (see Figure 4).  The steeper dip in both

directions seems to commonly occur on the front, or advancing, edge of the fold.  However, more

study of longitudinal closure must be made before this observation can be accepted as fact.

In a structural system where evidence of both strike-slip and thrust movements are present,

it is possible, and some will argue that, these movements have occurred at different times.  However,

such a scenario requires two separate tectonic events.  In the majority of cases, it is likely that both

strike-slip and thrust movements occurred simultaneously in a single transpressional event.

Figure 5 shows a series of thrust-fold anticlines that occur on the west side of the Wind River

Basin. These have resulted from southwesterly-directed thrusting (and using the criteria of steep dip
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in the direction of movement) having left-lateral slip.  There are 15 separate oil fields in this 60-mile

long chain of structures with total estimated reserves exceeding 500 million barrels of oil.  One

feature of interest is the average length of the major anticlines in the longitudinal direction -

approximately 8 miles.  It has been suggested that these anticlines and oil fields bear an en-echelon

relationship to each other (D.S. Stone, personal communication, 1999) but there is nothing in the

pattern of fields or folds to support this contention (see Figure 5).

Classical Strain Theory and Longitudinal Closure

How well does classical strain theory (e.g. Billings, 1972, 164-168, Uemura and Mizutani,

1979, p. 135-141) or the Andersonian theory of faulting (Anderson, 1951) explain the phenomenon

of strike-slip movement on thrust faults?  Not very well.  The mathematics of strain theory is quite

specific in stating that a thrust plane forms only at right angles to maximum compressive stress (see

Figure 6).  In this case there are no forces that can cause lateral movement on the thrust, so this

model cannot apply to an actual thrust-fold system comprised of tail-to-tail anticlines with

longitudinal closure, such as that shown in Figure 5.  

For lateral, i.e. longitudinal, movement to occur, the horizontal projection of the thrust plane must

be non-perpendicular to the direction of regional stress (see Figure 7).  The causative stress in this

case is generally referred to as "transpressive" (although it is still purely compressional for faults
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oriented orthogonal to it). The situation diagrammed in Figure 7 results in right-lateral movement

along the thrust system.  A rotation of the strike of the thrust the opposite way would create a system

with left-lateral movement. 

If strain theory dictates that thrusts must form at right angles to regional compression (“pure

compression”), how can  thrusts actually occur at an oblique angle to regional compression as in

Figure 7?  There are two possible answers:

1) The thrust plane forms under one compressive regime, and the direction of stress later

rotates - a special case.  This is what many geologists would propose, as it does not violate

the rules of strain theory too severely, or 

2) The more likely scenario, regional compression reactivates a pre-existing basement fault

that is not at right angles to maximum compressive stress - the more general case.

Figure 8 shows the actual mapped locations of the underlying reactivated basement faults on

the West Wind River Basin  thrust-fold system appearing in Figure 5.  These faults were mapped

from a recent detailed aeromagnetic study of the Wind River Basin that shows they are members of

an evenly spaced series of pre-existing parallel basement faults (shear zones) most of which show

no reactivation (basement fault characteristics and basement mapping techniques are discussed in

detail in Gay, 1995).
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Figure 8.  West Wind River Basin fold and thrust system with causative basement faults marked.
      This system follows 4 “main” NW trending basement faults and 3 cross-faults and 
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The faults in Figure 8 are quite revealing in helping us understand the kinematics of fault

reactivation.  It is seen that the thrust-fold system follows four separate northwest trending primary

basement faults and three secondary, or cross-cutting, northeast basement faults.  In the

southeasternmost cross-trend, the thrust cuts across it without being greatly affected.  However, on

the other two cross-trends, the folds terminate (Sage Creek Anticline and Winkleman Dome).

Possibly these cross-trends were characterized by up-to-the-west normal faults that acted as barriers

to longitudinal movement, thus resulting in accentuation of the folds and/or increased fracturing of

the strata in the folds.  Winkleman Dome is the most prolific oil producer in this whole chain of

fields, perhaps due to such fracturing.  A hidden northeast-trending cross-fault just northwest of

Winkleman Dome was actually proposed by Keefer (1970) to explain the structural relations he

observed in outcrop.  Sage Creek Anticline is the highest of the structures, but is non-producing,

apparently due to erosional breaching of the productive and/or sealing strata.

Other Examples and Conclusions

The phenomenon of end-to-end anticlines formed along regional thrusts having lateral

movement appears to be common in the Rockies.  Figure 9 shows such a thrust-fold system

controlled by basement faults in the Powder River Basin, Figure 10 shows another in the Big Horn

Basin, and Figure 11 is a structure map of the Western U.S. overthrust belt where three or more such

systems are present in a thin-skinned environment.  A similar strike-slip fold and thrust system in

the Midcontinent is the Nemaha Ridge in Kansas and Oklahoma where strike-slip (longitudinal)

movement may equal, or nearly equal, thrust (transverse) movement (Gay, 1999).

Knowing the general structural characteristics of compressional systems as set forth herein,

including the locations of controlling basement faults and their orientations relative to regional

stress,  should enable explorationists to find new oil and gas-bearing structures in the Rockies and
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of the published maps show an underlying thrust, but basement faults occur in precisely the
right locations for giving rise to blind thrusts or reverse faults that create the asymmetric folds.
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appears to result from left-lateral movement on the underlying thrust.  The “tri-shear” model
of fault propagation folding (Erslev, 1991) may apply to these structures.
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Figure 11. The western U.S. overthrust belt in Utah and Wyoming.  These structures  formed during
the early stages of the Laramide orogeny and show three or more classic chains of end-
to-end thrust-fold anticlines in a thin-skinned environment.  Horizontal movement appears
to be right-lateral because of steeper longitudinal dip on the north ends of the folds.
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in similar structural settings worldwide.  It should also contribute to a better understanding of the

kinematics of thrust systems in general.
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